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Thermoelectric transport of two-dimensional quantum spin Hall systems are theoretically studied in narrow
ribbon geometry. We find that at high temperature electrons in the bulk states dominate. However, by lowering
temperature, the “perfectly conducting” edge channels becomes dominant, and a bulk-to-edge crossover oc-
curs. Correspondingly, by lowering temperature, the figure of merit first decreases and then will increase again
due to edge-state-dominated thermoelectric transport.
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Thermoelectric conversion of heat into energy is one of
the challenging topics in material science. The efficiency of
thermoelectric energy converters depends on the transport
coefficients of the constituent materials through the figure of
merit. The figure of merit ZT is defined by ZT= �S2T

� ,1 where
T is the temperature, � is the electrical conductivity, S is the
Seebeck coefficient, and � is the thermal conductivity from
electrons and phonons. Maximum efficiency of a thermo-
electric conversion cycle depends on ZT and the highest
record of ZT is on the order of unity. It is an important but
challenging issue to search for thermoelectric systems with
larger ZT. There have been several proposals to overcome
this conflict and to optimize the thermoelectric efficiency.
One of the proposals is the phonon glass and electron
crystal2 �PGEC�. Because the phonon carries heat but not
charge, phonon conduction reduces thermoelectric efficiency.
Hence to achieve a high ZT, the system should be a bad
conductor for phonons but a good conductor for electrons.
These two conditions often conflict with each other, making
materials search difficult. Another proposal is low
dimensionality.3 Low-dimensional systems have a peaked
structure in the density of states, which is good for large S.
Despite these proposals, good thermoelectrics have remained
elusive and awaits qualitatively new approaches for improve-
ment of ZT.

In this Rapid Communication, we propose that the quan-
tum spin Hall �QSH� materials show enhanced thermoelec-
tric figure of merit at low temperature. The QSH systems are
new state of matters for bulk insulators,4–6 realized in two
dimension �2D� and in three-dimension �3D�. The 2D QSH
system has gapless edge states which are stable against non-
magnetic impurities.7,8 Hence we expect that in dirty sys-
tems, electron conduction through the edge states remain
good, while phonon conduction is suppressed, satisfying the
PGEC criterion. In addition, the edge states are one-
dimensional �1D�, which fits the “low-dimensional” crite-
rion. Another good reason for this expectation is that the
QSH effect was observed in Bi1−xSbx,

9 Bi2Se3,10 and Bi2Te3
�Ref. 11� which are good thermoelectric materials.

In 2D QSH systems in ribbon geometry, both the bulk
states and edge states contribute. Because the number of bulk
states is proportional to the ribbon width, we set the ribbon
width to be very narrow, thereby the edge states can have
comparable or even larger contribution, compared with the

bulk. We then find that the bulk and edge contributions com-
pete each other. We also find that there occurs a bulk-to-edge
crossover when the temperature is lowered. Because the edge
states undergo inelastic scattering and lose their coherence,
inelastic scattering length �inel gives an effective system size
for quantum transport by edge states. As the temperature is
lowered, �inel become longer, and the edge states become
dominant in thermoelectric transport. We note that the edge
transport cannot be dominant over the bulk transport at room
temperature because �inel might become very short.

The electric current j and thermal current w are coupled,
and are induced by the thermal gradient or the electric field.
In a linear response, they are described as

� j/q
w
� = �L0 L1

L1 L2
�� −

d�

dx

−
1

T

dT

dx
� , �1�

where q is the electron charge −e and � is the chemical
potential. Thermal and electric properties are given by

� = e2L0, S = −
1

eT

L1

L0
, �e =

1

T

L0L2 − L1
2

L0
,

ZT =
L1

2

L0L2 − L1
2 + �LTL0

,

where �e is the electron thermal conductivity and �L is pho-
non thermal conductivity.

We first consider the edge transport only and neglect the
bulk part. This corresponds to a case with very strong disor-
der, where the bulk states are assumed to be insulating, and
the phonon heat transport is negligible. To describe the co-
herent transport of the edge states, we use the Landauer for-
mula. The density of states are schematically shown in Fig.
1. The edge states are assumed to be perfectly conducting
over the whole sample and the transmission coefficient T�E�
is unity when the electron energy is within the bulk gap
�−��E�0�. Here we measure the energy from the bottom
of the conduction band and � is the energy gap. To clarify an
interplay between the bulk and the edge states, we focus on
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the bottom of the bulk conduction band and neglect the va-
lence band. We restrict the chemical potential to be −� /2
��. L	 is given by

L	
e =

�

sh
� dET�E��E − ��	�−

� f

�E
� , �2�

where the suffix e means the edge transport, h is the Planck
constant. � and s are the length of the sample and the cross
section of the sample. This is rewritten as

L	
e =

2�

sh
�kBT�	�

−�̄−�̄

−�̄

x	 ex

�ex + 1�2dx , �3�

where �̄= �
kBT , and �̄= �

kBT . We calculate ZT, by employing
the gap size of Bi2Te3 ��=0.15 eV�. The result �Fig. 1�
shows that ZT becomes larger and well exceeds unity, when
the chemical potential is in the bulk band. It is because the
edge states carry large energy.

In reality, when the chemical potential is in the bulk band,
the bulk transport dominates, and reduces ZT from the oth-
erwise large value. We treat the bulk and the edge transport
independently, which is valid within the inelastic scattering
length. We calculate the bulk transport by the Boltzmann
equation as

L	
b =� dE�E − ��	�−

� f

�E
�D�E�
 , �4�

where the suffix b means the bulk transport and D�E� is the
density of states. 
 is the relaxation time which is assumed to
be constant. The bulk band is assumed to be parabolic with
an effective mass m. For simplicity, we include only the first
subband due to the confinement within the ribbon, by assum-
ing that the gap between the first subband and second sub-
band is large. The transport coefficients are then given by
L	=L	

e +L	
b with

L	
b =

4�2mkBT��c�kBT�	

esh
�

−�̄

� �x + �̄x	ex

�ex + 1�2 dx �5�

where �� is the mobility and the coefficient c is the number
of the carrier pockets.

We calculate these transport properties at T=1.8 K. We
again employ the parameters for Bi2Te3 as follows. The pa-
rameters for bulk transport is taken from those for bulk

Bi2Te3. The electron effective mass is 0.02me where me is the
electron mass, c is 6. �� is measured at temperatures higher
than 80 K and we estimated �� to be 2000 cm2 V−1 s−1 at
T=1.8 K by assuming that �� saturates at lower temperature
due to disorder. The effective system size � is the inelastic
scattering length �inel, and we assume �	1 �m, which is a
lower bound of �inel in HgTe quantum well at 1.8 K.19 s is
10 nm�0.5 nm. �L is 0.1 Wm−1 K−1, which is expected
from extrapolation from experimental data12 and theoretical
estimate.13 These parameters might have some error bars be-
cause of the lack of the experimental data for Bi2Te3 thin
film. The results are shown in Fig. 2. For these parameters
the energy difference between the first and the second sub-
bands is about 0.14 eV, and the chemical potential � is as-
sumed be less than this energy. Many thermoelectric materi-
als such as Bi2Te3 are narrow-gap semiconductors and the
effective mass is much smaller than the electron mass. Hence
the subband structure is prominent and the above assumption
is satisfied without difficulty.

From Figs. 2, ZT has a maximum when the chemical po-
tential � is near the band edge. This results from a competi-
tion between the bulk and the edge states as follows. The
Seebeck coefficient from the bulk states is larger when � is
in the bulk gap whereas that from the edge states is larger
when � is in the bulk band. Their effects tend to cancel each
other because their charges have opposite signs. Therefore,
maximum of ZT occurs when � is around the band edge.

For optimization of the thermoelectric figure of merit in
QSH systems, we define the following dimensionless param-
eters from the prefactors in Eqs. �3� and �5�:

r = 
2�

sh
��
4�2mkBT��c

esh
� =

e�

2�2mkBT��c
, �6�

g = 
 �L

kB
2T
��
4�2mkBT��c

esh
� =

�Lesh

4�2mkB
5T3��c

. �7�

The parameter r represents the ratio between the edge and
the bulk transport and g represents the ratio between the
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FIG. 1. �Color online� �a� Schematic bands for the bulk and
edge states used in the calculation. �b� Thermoelectric figure of
merit ZT as a function of chemical potential �, by considering only
the edge states in the 2D QSH system. Transport by bulk carriers
and phonons is ignored.

0

0.2

0.4

0.6

0.8

1

-4 -2 0 2 4

Bulk

Total

Edge

ZT

µ

2

6

10

14

-4 -2 0 2 4

x10

σ(
1/
(Ω
m
))

Bulk

Total

Edge

-400
-300
-200
-100
0
100
200
300

-4 -2 0 2 4

S(
µV
/K
)

Edge

Bulk

Total

µ

0

0.1

0.2

0.3

0.4

-2 0 2 4 6 8 10

Total
Edge&Bulk

Edge

Bulk
Latticeκ(

W
/(
Km
))

µ

6

µ

(a) (b)

(c) (d)

FIG. 2. �Color online� A calculation example of �a� Conductiv-
ity, �b� Seebeck coefficient, �c� thermal conductivity, and �d� ZT as
a function of the chemical potential.
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phonon heat transport and the bulk transport. These ratios
characterize thermoelectric transport of 2D QSH systems.
For each r and g we maximize ZT as a function of �̄. In Fig.
3, we show the maximum ZTmax and the value of �̄= �̄max
giving the maximum. To focus on an interplay between bulk
and edge transport, we restrict � to be near the conduction

band edge, and ignore the valence band, by putting �̄→�.
From Fig. 3�a�, as a function of r, ZTmax becomes minimum
at r	2.6, because of a competition between the edge- and
bulk-state transport. This interplay is prominent in the plot of
�̄max in Fig. 3�b�. The plot has a jump at around r	2.6. As
seen in Fig. 3�c�, at about r	2.6, the plot of ZT as a function
of �̄ has two peaks, one from the bulk and the other from the
edge. As r passes through 2.6 from below, the peak from the
edge dominates the peak from the bulk, and bulk-to-edge
crossover occurs.

In Fig. 3�a� we can see that at r=0 �no edge transport�, the
resulting ZT is sensitive to g, and it is important to reduce g
by suppressing the phonon heat transport. However, disorder
also suppresses electronic transport and ZT is not enhanced
so much. On the other hand, as r becomes larger, the result
becomes insensitive to g. Disorder will enhance r, because
the bulk mobility becomes smaller. The ZT will then be en-
hanced. Generally, at low temperatures both r and g tend to
increase as T decreases, as we explain in the following. As T
is lowered, the mobility �� increases and eventually satu-
rates. �L is given by �L= 1

3CvLlL, where C is the phonon
specific heat, vL is the phonon velocity, and lL is the phonon
mean-free path. As the temperature decreases, lL becomes
larger and saturates, while C decreases; hence, �L first in-
creases and then decreases at lower temperatures. From these
behaviors, r and g tend to increase at low temperatures, pos-
sibly below around 10 K. An estimation using the above-
mentioned parameters for Bi2Te3 nanoribbon gives r=9.4
and g=8.2 at T=1.8 K, which is located in the edge-

dominated regime. We can estimate the crossover tempera-
ture for Bi2Te3 narrow ribbon taking into account the tem-
perature dependence �� and �L in the similar way as in Fig.
2, and assuming that �inel, decreases as T−1.5 as has been
observed in quantum Hall systems.14 The crossover tempera-
ture is estimated to be around 5–10 K.

To realize the edge-dominated transport, the ribbon width
w should be much longer than the penetration depth 
 of the
edge states, thereby we can ignore hybridization of the gap-
less edge states at the opposite edges. This hybridization in-
duces a gap �	 te−w/
 to the edge states,15 where t is the
bandwidth �several eV�. The penetration depth 
 depends on
the systems, and in some systems such as Bi ultrathin film, it
is estimated to be on the order of the lattice constant.16 As we
set w=10 nm which is several decades of the lattice con-
stant, the hybridization gap � is estimated to be on the order
of mK. Thus in our temperature range above 1 K, this gap
can be safely ignored. When we make the ribbon width to be
much narrower, comparable to the penetration depth 
, the
edge states at opposite edges hybridize and opens a sizable
gap,15 killing the perfectly conducting edge channels.

In 2D QSH systems, elastic backscattering of edge states
due to nonmagnetic impurities is prohibited.7,8 Inelastic scat-
tering is a key factor to characterize transport properties of
the system. The electrons in edge states keep their coherence
within the inelastic scattering length �inel, which plays the
role of the effective system size. We first estimate the
electron-phonon �el-ph� inelastic scattering length �inel, fol-
lowing the calculation on the quantum Hall �QH� system.17

Here we assume the edge-state dispersion to be linear with
velocity vc. We put the bulk wave functions to be propor-
tional to sin��y /w�. By considering scattering by 2D longi-
tudinal acoustic phonons, the relaxation time 
 is given by

−1= �
ee�−1+ �
eb�−1, where 
ee and 
eb are relaxation times
by the edge-edge, the edge-bulk el-ph scattering. Following
Ref. 17 we obtain

1


ee 	
�Vep

2 T2

16�cL
3vc

,
1


eb 	
�3Vep

2 T2

�cL
3vc

� 


W
�3

, �8�

where Vep is a screened el-ph scattering potential. If we take
Vep=10−19 J, T=1 K, �=10−6 kg /m2, cL=103 m /s, 

=10−10 m, and W=10−9 m as an example, we get 
ee

	10−8 s and 
eb	10−6 s. If vc	106 m /s and �inel=vc

	10−2 m. Experimental �inel is much shorter, implying that
el-ph scattering is not crucial among various inelastic scat-
tering in the QSH system around 1 K.

In addition to the el-ph interaction, the electron-electron
�e-e� interaction also induces decoherence of edge states.
There are two types of e-e interaction: edge-edge e-e and
edge-bulk e-e interactions. The edge-edge e-e interaction is
renormalized into the edge state action and form the Lut-
tinger liquid. Therefore this edge-edge e-e interaction does
not cause dephasing if the system is clean enough and the
edge channels remain perfectly conducting well above
Kondo temperature.18 In disordered systems, it gives rise to a
finite inelastic scattering time while its estimate will be dif-
ficult. In addition, the edge-bulk e-e interaction also appears
at finite temperature and it depends crucially on the details of

�������

���

���

���

	�

�

�

�

	���
	���
	���
�
���
���
���
���
���

g

r

µmax

�

����

���


����

	� 	� 	� � � � �

����


����


µ

�����

����

����

��

���

���

���

�





��

��
���

���

���

���

����

����

����

��
�

����

����

����

��
�

����

r

g

ZTmax

���

FIG. 3. �Color online� �a� ZTmax and �b� �̄max as a function of r
and g. �c� ZT as a function of �̄ for various values of r at g=0.5.
Bulk-to-edge crossover is seen by increasing r.
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the system. Calculation of e-e interaction in the QSH sys-
tems is interesting but is beyond the scope of the present
Rapid Communication.

The inelastic scattering length �inel is accessible experi-
mentally. In the HgTe quantum well, nonlocal edge-state
transport is observed19 in 1 �m sample at 1.8 K. It indicates
that �inel is longer than the sample size, �inel�1 �m at T
=1.8 K. It is limited by the potential inhomogeneity due to
gating. On the other hand, the inelastic scattering length is
measured in a QH system to be about 1 �m at 1 K �Ref. 14�
and is decreasing function of temperature. Based on these
data we have used �inel=1 �m at T=1.8 K in obtaining Fig.
2, If the inelastic scattering length can be made longer, it will
increase r and enhance ZT by edge-dominated thermoelectric
transport.

We address implications of our theory for 3D QSH sys-
tems �topological insulators�. Because the surface states on
3D QSH systems are not perfectly conducting, the effect of
surface states in 3D QSH systems on thermoelectricity will
be less prominent than that of edge states in 2D QSH sys-
tems studied in this Rapid Communication. Nevertheless,
there can be one promising possibility also in the 3D QSH
systems. In 3D QSH systems, protected 1D states20 of the
crystal exist on line dislocations, depending on the bulk to-
pological numbers. These 1D states are perfectly conducting.
Recently, a prominent magnetofingerprint was observed in a
topological insulator Bi2Se3 and it is suggested that the phase
coherence is retained over 2 mm at around 1 K.21 It is also
suggested21 that the transport involved in this magnetofinger-
print is carried by these 1D states on dislocations. If this

scenario is true, they can be dominant in low temperatures,
as we have shown in this Rapid Communication. The esti-
mated phase coherence length �inel	2 mm is three orders of
magnitude larger than that we used in our calculation and it
is favorable for thermoelectric transport.

Recently, an anomalous enhancement of the Seebeck co-
efficient at 7 K is reported in p-Bi2Se3.22 Though our 2D
model cannot describe three-dimensional p-Bi2Se3, we may
attribute this enhancement to either surface states or 1D
states along line dislocations. In particular, the 1D states
form perfectly conducting channels and will enhance the fig-
ure of merit. We note that in our calculation the edge and
bulk contributions to the Seebeck coefficient has opposite
signs because the carrier charges have opposite signs �i.e.,
holes and electrons� and therefore the Seebeck coefficient
changes sign at the bulk-to-edge crossover by changing T.
On the other hand, the Seebeck coefficient on p-Bi2Se3 does
not change sign by lowering temperature. Within our inter-
pretation this implies that the bulk carriers and the 1D carri-
ers have the same signs for the charge in the experiment.

To summarize, we study thermoelectric properties of two-
dimensional quantum spin Hall systems. The edge states be-
come dominant in thermoelectric transport at low tempera-
ture, which might be below 5–10 K for narrow ribbons. This
bulk-to-edge crossover temperature is higher for longer in-
elastic scattering length of edge states.
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